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The e!ects of periodic spring supports on the acoustic response of an in"nite, #uid-loaded
beam subjected to a travelling, time-harmonic loading are investigated. To account for the
numerous wavenumber components caused by the elastic supports; the wavenumber-
harmonic series proposed in previous study (C. C. Cheng et al. 2000 Journal of<ibration and
Acoustics ASME) is used to represent the transverse response. Results show that for
a periodically, elastically supported beam subjected to a nearly stationary force, an acoustic
radiation peak occurs when the excitation frequency coincides with one of the bounding
frequencies of the propagation zones. Furthermore, each enhanced acoustic radiation will
split into two peaks due to the Doppler shift when the harmonic force becomes travelling
and a formula based upon equations of propagation constant and the Doppler e!ect is
derived to help determine the wavenumber ratios corresponding to these peaks.

( 2001 Academic Press
1. INTRODUCTION

Flexural wave motion in periodically supported structures has been studied extensively in
the past. Motion of the whole structure was usually deduced from the analysis of a single
substructure instead of maintaining the whole structure and the wave-propagating constant
is used to describe the #exural wave relation between two adjacent substructures [1]. The
wave propagating constant method pioneered by Heckel [1], followed by Gupta [2], Mace
[3, 4], Mead et al. [5}13], Morse [14], Yuan [15] and others have proved to be e$cient in
analyzing such structures. However, the calculation of the complex propagation constants
for a periodic structure becomes very di$cult when the #uid-loading e!ect is taken into
account in the formulation.

Instead of using the wave propagation method to reduce the analysis to a substructure,
Cheng and Chui [16] formulated the vibration response on the whole structure in
wavenumber domain through Fourier transform. For an air-loaded, periodically simply
supported beam subjected to a stationary line force, they showed that the radiated sound
power exhibited peaks at certain wavenumber ratios. The wavenumber ratios at which the
radiation peaks occur nearly coincide with the lower bounding wavenumber ratios of the
odd number of propagation zones. However, Cheng's formulation did not include the
presence of numerous wavenumber components induced from the elastic supports and is
subjected to the restriction that the external force is located on one of the elastic supports.

To account for the in#uences of numerous wavenumber components caused by the elastic
supports on the vibration responses, Cheng et al. [17] presented an alternative approach
0022-460X/01/030531#14 $35.00/0 ( 2001 Academic Press
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named as wavenumber-harmonic method in which a wavenumber-harmonic series was
proposed to represent the transverse response of a periodically supported beam. Results
showed that the number of acoustic radiation peaks increases, compared with
a periodically, elastically supported beam subjected to a stationary force, when the external
loading is travelling. Unfortunately, in their studies no formula could precisely determine
the wavenumber ratios at which the acoustic radiation peaks occur when the supports are
elastic and the external loading is travelling.

This paper may be considered as an extension of the previous study [17] in which the
wavenumber-harmonicmethod is presented. We focus on three topics that remain elusive in
the previous research. The "rst is to "nd the discrepancy in responses between an in"nite
beam on an elastic foundation and an in"nite beam with periodic, elastic supports. The
second is to determine the wavenumber ratios at which the acoustic radiation peaks occur
when the periodic supports are elastic and the external loading is nearly stationary. The
third is to derive a formula to determine the wavenumber ratios corresponding to these
peaks when the external loading becomes travelling.

2. WAVENUMBER-HARMONIC ANALYSIS

As a "rst step, a general formulation for the vibro-acoustic response of a periodically
spring-supported, #uid-loaded Timoshenko beam subjected to a travelling, time-harmonic
loading is presented. Details of the derivation using wavenumber harmonic series can be
found in reference [17]. However, some of them will be repeated here in order to introduce
the notation that will be used as well as to clarify ideas.

Assume a periodically spring-supported beam of height h and of in"nite extent lying in
the plane y"0. A stationary acoustic #uid of density o

0
and sound speed C

0
occupies the

half space (y'0) and there is a vacuum under the beam (y(0). The beam is excited by
a travelling, time-harmonic loading with subsonic speed < and frequency u as shown in
Figure 1. The equation of motion for a Timoshenko beam is given by Junger and Feit [18]
as
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Figure 1. Schematic representation of problem geometry.
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where u (x, t) represents the transverse displacement of the beam, I the cross-sectional
second moment of area per unit width, ol the density of the beam, i2 the cross-sectional
shape factor, f (x, t) the external moving force, p(x, y"0, t) the acoustic pressure acting on
the beam surface, p

1
(x, t) the force from the spring supports, EM ("E (1#jg)) and

GM ("EM /2(1#l)) are the complex elastic and shear modulus, respectively, g the structural
damping and l the Poisson ratio. By applying the spatial Fourier transformation to
equation (1), the transformed equation is written as
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(2)

where m is the wavenumber variable. The dimensionless wavenumber response of the
in"nite, periodically supported, #uid-loaded beam is given by [17]
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) is the acoustic wavenumber, f("m/k
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variable, l the spacing between two adjacent supports and M("</C
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) the Mach number of the

travelling loading. The external moving force FI (f, t), the sound pressure PI (f, y, t) and the
reactions PI
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(f, t) from the elastic supports in the wavenumber domain are expressed as follows:
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the acoustic medium density, k
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support per unit width, and
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Substituting equations (4}6) into the transformed equation (2), then the resulting equation
is simpli"ed to two equations as follows:
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where
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De"ne elastic support sti!ness ratio as
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Equations (10) and (11) can be rearranged into a set of linear algebraic equations as
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The unknown solutions of expansion coe$cients uN
n
(f) can be obtained by using a Gaussian

elimination algorithm after this set of equations is truncated to a set with a "nite number of
equations. Through integrating the surface acoustic intensity over the entire beam, the
dimensionless radiated sound power=, which is the sum of the sound power contributed
from each wavenumber component is given by
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The limits of integration are given as follows:
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3. NUMERICAL RESULTS AND DISCUSSION

The speci"c model analyzed consisted of an in"nite steel beam (elastic modulus
E"2]1011 N/m2, density ol"7800 kg/m3, height h"2)54]10~2 m, Poisson's ratio
l"0)3, cross-sectional shape factor i2"0)85, structural damping g"0)01) submerged in
air (C

0
"343 m/s, o

0
"1)24 kg/m3). Two di!erent sti!nesses of the elastic supports were

examined, S"10~4 and 10~2, besides the unsupported beams as baseline data. The
support spacing l/h is chosen to vary from 1 to 105. Results were calculated at three di!erent
Mach numbers of a travelling, time-harmonic point force, M"10~4, 0)25 and 0)4
respectively.

Shown in Figure 2 are the wavenumber responses at frequency k
0
h"0)05 for

a periodically supported, air-loaded beam with the support sti!ness ratio S"10~2 and
support spacing l/h"10. The amplitude in logarithmic scale is a summation of the
root-mean-square of the responses of wavenumber components from uN

~15
(f) to uN

15
(f):
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Note that the numerical solution that requires the in"nite set of equations as shown in
equation (3) to be truncated has been discussed in the previous work [17]. For M"10~4,



Figure 2. Wavenumber response for an air-loaded, periodically supported beam for a range of M values,
s"10~2, l/h"10, k

0
h"0)05. } - } - }, M"10~4, **, M"0)4.
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notice that there is no peak at low moving speed, which indicates that the beam exhibits
static de#ection. However, when M"0)4, it shows that the wavenumber response consists
of many peaks; and the spacing, Dm, between two adjacent peaks is found to be

Dm"
2n
l

. (24)

Rewrite equation (24) in dimensionless form as

Dm"
2n

k
0
h (l/h)

. (25)

It shows that the di!erence of two adjacent dominating wavenumber components induced
by the periodic supports is 2n/l.

Figure 3 shows the wavenumber response for a periodically spring-supported, air-loaded
beam for S"10~2, k

0
h"0)05, M"0)4 and three di!erent support spacings, l/h"1, 102,

and 105 respectively. For a periodically supported beam with such large support spacing
l/h"105, the spring supports have almost no e!ect on the response, hence, the model
behaves as an unsupported beam and there appear only two pronounced peaks. However,
for support spacing l/h"102, the support spacing and support sti!ness play an important
role in determining the peak values of the propagating waves and the corresponding
wavenumbers. From the curve of l/h"102, the wavenumber response consists of many
peaks caused by the elastic supports and the spacing between two adjacent peaks can be
determined by equation (25). If the support spacing is reduced to l/h"1, no dominating
peak appears. It implies that the beam exhibits static de#ection and in fact the response is
similar to that of a beam on an elastic foundation. Naturally, a fundamental issue that needs
to be addressed is what is the di!erence between a periodically, elastically supported beam



Figure 3. Wavenumber response for an air-loaded, periodically supported beam for a range of l/h values,
s"10~2, k

0
h"0)05, M"0)4. } } } , l/h"1; } - - } - - }, l/h"102; **, l/h"105.
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with a small support spacing and a beam on an elastic foundation at low frequency. For
a Timoshenko beam on an elastic foundation, the equation of motion has the same form as
equation (1) except that the force p

1
(x, t) from the elastic support is replaced by that from

the elastic foundation:

P
e
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e
u(x, t), (26)

where k
e

is the sti!ness per unit area of the elastic foundation. The displacement ;I (m, t),
sound pressure PI (m, y, t) and the force PI
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(m, t) from the elastic foundation in a wavenumber

domain can be rewritten as follows:
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Substituting equations (27}29) into equation (2), the latter is expressed as

A(m); (m)e+ (mV`u)t"B (m) f (m)e+(mV`u) t!B(m)D (m);(m)e +(mV`u)t

!k
e
B (m); (m)e+(mV`u) t,

(31)



538 C.-C. CHENG E¹ A¸.
where
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Equation (35) is rewritten in dimensionless form as
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For a small value of l/h and at low frequency, the summation in equation (10) can be
approximated by the term at r"0 and the in#uences of the spring support on the beam
vibration are dominated from supports close to the excitation. Hence, equation (10) can be
simpli"ed as
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Substituting equations (13) and (16) into equation (42), the latter is rewritten as
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Comparing equation (43) with equation (36), one can "nd that the response of a beam on an
elastic foundation is equivalent to that of a periodically, elastically supported beam with the
following simple relation as expected:

k
s
"k

e
l. (44)

However, for the relation to hold would require that the support spacing is much smaller
than the #exural wavelength for the periodically, elastically supported beam. Although this
result is so obvious and is logically predictable, the intention is to show that the
wavenumber-harmonic method can also be used to study the vibration behavior of a beam
on a continuous foundation.

Figure 4 illustrates the sound power radiated from the speci"c model with support
sti!ness S"10~4, support spacing l/h"10 and at the Mach numbers M"10~4 and 0)25
respectively. The sound power radiated from an unsupported beam at M"10~4 and 0)25 is
also plotted for the purpose of comparison. De"ne wavenumber ratio as
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k
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B

is the free bending wavenumber
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Figure 4. Dimensionless radiated sound power versus wavenumber ratio for a periodically supported beam for
a range of M values, s"10~4, l/h"10, in air.**, M"10~4; } } }, M"0)25; } - } - }, M"10~4 (Unsupported);
} - - } - - }, M"0)25 (Unsupported).



Figure 5. A spring mass model of the spring-supported system.
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Notice that the strong unique coincidence radiation peak located at c"1 for the
unsupported beam subjected to a nearly stationary force M"10~4, is split into two
coincidence peaks when the force is travelling with M"0)25. According to Keltie [19], one

peak now is located at the wavenumber ratio c"J1!M, and the other at c"J1#M.
For the periodic spring-supported beam subjected to a nearly stationary force at M"10~4,
it is of interest to "nd that the radiated sound power shows another pronounced peak at the
wavenumber ratio c"0)45. The appearance of this special radiation peak could be
explained using a simple lumped mass model that represents a single section of the
periodically supported beam as shown in Figure 5.

The natural frequency of this model is simply given by
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The wavenumber ratio corresponding to equation (47) is
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According to equation (48), the wavenumber ratio is calculated to be 0)446 and agrees with
the location of the observed peak in Figure 4. At this speci"c wavenumber ratio, all the
substructures move almost in phase, and therefore generate a radiation peak.

For the periodic supported beam subjected to a moving load with speed M"0)25, notice
that the radiation peak at c"0)446 becomes #at and the associated wavenumber ratios
bandwidth increases. The wavenumber ratios corresponding to the upper and lower ends of
this bandwidth can be obtained using the Doppler formula

u
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u
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Substituting equation (49) into equation (45), the corresponding wavenumber ratios can be
written as
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where c
1

and c
2

are the upper and lower ends of the wavenumber ratio bandwidth
respectively. For the periodically supported beam at M"0)25, the wavenumber ratios, c

1
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and c
2
, are calculated to be 0)399 and 0)515, respectively, which agree with the ends of the

bandwidth in Figure 4.
For a periodically spring-supported beam subjected to a stationary force, the bounding

frequencies corresponding to each propagating zone can be calculated using the equation of
propagation constant given by Mead [9]:
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where k is the complex propagation constant, X is the non-dimensional frequency and G is
the parameter which describes in#uences of the support sti!ness and support spacing
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The relation between the wavenumber ratio c and the non-dimensional frequency X is given
by

c"
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(l/h)J12olC2
0
/E
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Note that one can substitute equations (47) and (52) into equation (54), then obtain the same
result as equation (48). When the support spacing is increased from l/h"10 to 100, the
radiated sound power is showed in Figure 6. The number of radiation peaks is greater than
that shown in Figure 4, especially in the region of low wavenumber ratios. However, for
M"10~4, the wavenumber ratio corresponding to each radiation peak can be determined
by equations (51) and (54). Table 1 lists the lower and upper bounding non-dimensional
frequencies and the corresponding wavenumber ratios of the "rst "ve propagation zones of
a periodically supported beam with the support sti!ness S"10~4 and spacing l/h"100.
Each bounding wavenumber ratio agrees with that corresponding to each radiation peak in
Figure 6 except for the "rst lower bounding wavenumber ratio c"0)133 due to
hydrodynamic cancellation. For the same speci"c model subjected to a travelling,
time-harmonic loading at speed M"0)25, it is worth noting that the number of radiation
peak increases due to the Doppler shift. Although it may not be apparent in Figure 6, the
wavenumber ratio corresponding to each radiation peak can be determined approximately
using equation (50) and is listed in Table 2.

4. CONCLUSION

The advantage of expressing the response in terms of a wavenumber harmonic series
arises from the fact that the periodic boundary conditions and the phase relation between
two adjacent substructures will not be used. Furthermore, the #uid-loading e!ect is easily



Figure 6. Dimensionless radiated sound power versus wavenumber ratio for a periodically supported beam for
a range of M values, s"10~4, l/h"100, in air. **, M"10~4; } - - } - - }, M"0)25.

TABLE 1

Bounding frequencies for the ,rst ,ve propagation zones of a periodically spring-supported
beam, S"10~4, l/h"100, in air

Propagation Non-dimensional frequency Wavenumber ratio
zone no. X c

1 9)8 0)133
19)5 0)188

2 39)4 0)268
65)8 0)346

3 88)9 0)402
103)6 0)434

4 158)0 0)536
166)1 0)549

5 246)8 0)670
251)8 0)676
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taken into account in the formulation. Results show that the response of a beam on an
elastic foundation can be approximated using a periodically, elastically supported beam
when the support spacing is small compared with the #exural wavelength. For
a periodically, elastically supported beam subjected to a nearly stationary force, an acoustic
radiation peak occurs when the excitation frequency coincides with one of the bounding
frequencies of the propagating zones. Each enhanced acoustic radiation will split into two
peaks due to the Doppler shift when the force becomes travelling. A formula based upon
equations of propagation constant and the Doppler e!ect is derived to determine the
wavenumber ratios corresponding to these peaks.



TABLE 2

=avenumber ratio c
1,2

for a periodically spring-supported beam with S"10~4, l/h"100,
M"0)25, in air

Propagation Wavenumber ratio Wavenumber ratio (M"0)25)
zone no. c (M"10~4) c

1
c
2

1 0)133 0)119 0)154
0)188 0)168 0)217

2 0)268 0)240 0)309
0)346 0)309 0)399

3 0)402 0)359 0)464
0)434 0)388 0)501

4 0)536 0)479 0)619
0)549 0)491 0)634

5 0)670 0)599 0)774
0)676 0)605 0)781
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APPENDIX A: NOMENCLATURE

C
L

longitudinal wave speed
C

0
sound speed in the acoustic medium

E elastic modulus
EM complex elastic modulus
f
0

external force strength per unit width
f (x, t) moving force
FI (m, t) moving force in wavenumber domain
GM complex shear modulus
h height of the beam
I cross-sectional second moment of inertia per unit width
j J!1
i2 cross-sectional shape factor
k
B

free bending wavenumber
k
e

sti!ness of the elastic foundation per unit area
k
0

acoustic wavenumber
ks sti!ness of the spring support per unit width
l spacing between two adjacent supports
M Mach number
p(x, y"0, t) acoustic pressure acting on the beam surface
PI (m, y, t) acoustic pressure in wavenumber domain
p
1
(x, t) spring support force

p
e
(x, t) elastic foundation force

PI
1
(m, t) spring support force in wavenumber domain

PI
e
(m, t) elastic foundation force in wavenumber domain

S sti!ness ratio
u(x, t) transverse displacement of the beam
;M (f, t) dimensionless transverse displacement of the beam in wavenumber domain
< moving force speed
= dimensionless radiated acoustic power per unit width
c wavenumber ratio
f dimensionless wavenumber variable
m wavenumber variable
g structural damping
l Poisson ratio
o
0

acoustic medium density
ol beam density
u moving force frequency
X non-dimensional frequency
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